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Abstract

We analyze the time harmonic Maxwell’s equations in a geometry containing
perfectly conducting split rings. We derive the homogenization limit in which the
typical size η of the rings tends to zero. The split rings act as resonators and the
assembly can act, effectively, as a magnetically active material. The frequency
dependent effective permeability of the medium can be large and/or negative.

1. Introduction

Meta-materials consist of a large number of small elements. While each of the
elements contains only ordinary materials, the properties of the meta-material can
be very different from those of its constituents. In the theory of light, the index
of refraction of every ordinary material is positive, but today we know how to
construct meta-materials that have, effectively, a negative index of refraction. The
astonishing properties of negative index materials has been investigated already
in 1968 by Veselago [32], the first ideas how to construct a negative index meta-
material appeared around 2000, an experimental realization of such a material was
reported in [31]. In the subsequent years, many possible applications have been
investigated, e.g., perfect lensing [25], directing light-beams around obstacles [26],
or cloaking by anomalous localized resonance [17,23].

The first ideas for negative index meta-materials were based on constructions
with split rings. In these constructions the ring serves as an inductive element and
the slit serves as a conductive element. The combination of the two elements forms
an oscillator. When the oscillator (which is smaller than the wave-length of light)
is in resonance with the frequency of the light, resonance effects can lead to large
local fields. When this is the case, the macroscopic features of the meta-material
are given by effective coefficients (permittivity and permeability) that can be very
different from the coefficients of thematerials that are used in the construction: they
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can be very large or they can have the opposite sign. For a recent general overview
regarding the effect of resonances in many small resonators see [27].

The mathematical analysis of negative index meta-materials is possible with
the methods of homogenization theory, which has roots in the 1970s [3]. Until
today, the most powerful tool for the homogenization of periodic problems was the
method of two-scale convergence [1]. The homogenization of Maxwell’s equations
was already performed in [15], but the analysis of homogenization settings that
lead to unexpected effective equations was pioneered by Bouchitté. Together with
co-authors, he derived effective systems with negative effective permittivity [14],
with nonlocal effects [6], and with an effective magnetic response [5]. The three-
dimensional Maxwell’s equations have been analyzed first in [7] using the split
ring geometry, later in [4] with dielectric Mie-resonators, and in [19] with flat
rings. Very recently, the combination of resonator elements with wire elements was
also successfully analyzed. The setting is very close to the experimental set-up of
the early negative index constructions; the mathematical analysis reveals that it is
possible to obtain an effective system with two coefficients εeff and μeff , which
have both a negative real part [21]. With that contribution, we have a mathematical
confirmation and an effective description of a negative index meta-material.

The possibility of light transmission in periodic media has been investigated for
general microstructures in [29]. The possibility of transmitting light can be charac-
terized in terms of topological properties (such as connectedness) of the inclusions.
Recently backward propagating waves generated by effective surface impedances
from sub-wavelength corrugated perfectly conducting waveguides have been de-
veloped via two scale homogenization in [22].

The above contributions regard results in the language of two-scale homoge-
nization results, i.e., the derivation and justification of effective equations. For other
approaches using local resonances see [18,24]. A recent development focuses on
negative index metamaterials generated by subwavelength plasmon resonances as-
sociated with noble metals in the optical regime see [9–12]. There, frequency in-
tervals are identified over which negative group velocity and power flow occur for
coated inclusions and dispersed phases.

Regarding new ideas for the experimental design of negative indexmaterials see
e.g., [16,30].Apart fromconstructing negative indexmaterials (with all the possible
applications of these materials), there are other examples where homogenization
leads to unexpected effective equations, describing astonishing effects; for example,
resonance with surface plasmons can induce perfect transmission through sub-
wavelength holes [8]. The resonance in small Helmholtz resonators can lead to
dispersive effects in the propagation of sound waves [20].

The results of this contributionWe consider a split ring geometry with perfectly
conducting materials. The latter means that the metal inclusion is not described
by a large permittivity; instead, the electric and the magnetic field vanish inside
the metal and the metal interacts only via boundary conditions with the fields. We
perform the homogenization limit, i.e., we consider solutions to the time-harmonic
Maxwell’s equations and study their limiting behavior as η → 0, where η > 0 is the
typical size of the single split ring. We obtain that the limiting fields are described
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by time-harmonic Maxwell’s equations with effective parameters εeff and μeff . We
provide formulas for these two parameters; the formulas yield, in particular, that
μeff can be large and that it can have a negative real part for an appropriate choice
of parameters (connected to resonance).

The above description shows that we are, to some extent, following the path that
was chosen in [7] (only that now the metal is perfectly conducting). The homoge-
nization of split ring microstructures is very complex: one has to deal, at the same
time, with a large contrast and with singular geometries in the homogenization set-
ting, furthermore with three-dimensional vector calculus to perform the analysis.
For these reasons, the proofs in [7] are involved.

With the contribution at hand, we analyze the case of perfectly conducting
split rings. Many aspects of the analysis simplify considerably in this case. Most
importantly, the magnetic cell-problem is no longer a coupled problem: in the
present situation, the cell-problem can be solved with four quite explicit shape
functions. Obviously, we also profit from the developments in homogenization
theory of the last 10 years, e.g. the fact that we understand the system now better
using the notion of geometric averaging (introduced in [4]). Neglecting the more
technical parts of previous proofs, such as the description of the scattering problem,
we can describe here the heart of the negative μeff -result in a quite accessible way.

1.1. Mathematical Problem and Main Result

We study the time-harmonicMaxwell equations in a complex three dimensional
geometry. Let � ⊂ R

3 be a domain and let R ⊂ � be a subdomain in which
many split ring resonators are distributed periodically. The metallic split rings are
modelled as perfect conductors. We denote the set that is occupied by metal by
�η ⊂ R. We therefore study the system

curl Eη = iωμ0Hη (1.1)

curl Hη = − iωε0Eη (1.2)

in the domain�η = �\�̄η. The number ω > 0 denotes the frequency, the complex
numbers ε0, μ0 are the permittivity and the permeability in vacuum. To simplify
notation, we consider only the sequence η j = η02− j .

We have to specify boundary conditions on ∂�η. To this end we consider trivial
extensions of the fields.We denote the trivial extensions again as Eη, Hη : � → C

3

(setting Eη(x) := Hη(x) := 0 for x ∈ �η). We demand that the extensions satisfy

curl Eη = iωμ0Hη (1.3)

in �. Equation (1.3) provides a boundary condition: it implies that the tangential
components of Eη are vanishing on the boundary ∂�η (since the curl of Eη has no
singular part). We remark that (1.3) also implies that

div Hη = 0 (1.4)

holds in � for the trivial extensions. Equation (1.4) implies that the normal com-
ponent of Hη is vanishing on ∂�η.
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Theorem 1.1. Let the geometry of the problem be given by domains �η ⊂ R ⊂
� ⊂ R

3 as specified in Sect. 1.2. Let (Eη, Hη) be a sequence of solutions of (1.1)–
(1.2) with the boundary conditions expressed by (1.3). We assume that the sequence
of solutions satisfies ∫

�

|Eη|2 + |Hη|2 ≤ C (1.5)

for some C ≥ 0, independent of η > 0. Let (Ê, Ĥ) be the geometric limit fields as
defined in (1.15) and (1.16). Then there holds

curl Ê = iωμ0μ̂Ĥ (1.6)

curl Ĥ = − iωε0ε̂ Ê (1.7)

in the distributional sense on �, where the effective permittivity and permeability
are given as

ε̂(x) :=
{

εeff for x ∈ R
1 for x ∈ �\R

μ̂(x) :=
{

μeff for x ∈ R
1 for x ∈ �\R.

(1.8)

The tensor εeff is provided in (2.7) in terms of cell solutions Ek(y), k = 1, 2, 3.
The frequency dependent coefficient μeff = μeff(ω) is provided in (2.25) with the
cell solutions Hk(y), k = 0, 1, 2, 3.

Onassumption (1.5)we note that the assumption on the energies can be removed
for many choices of boundary conditions by a compactness argument. Assuming
that, for a fixed boundary condition, the solution sequence does not satisfy (1.5), one
rescales to obtain a normalized family of solutions. Theorem 1.1 is applied to the
normalized sequence and provides the convergence to a solution of a limit system.
The boundary conditions of the limit system are trivial due to the rescaling, hence,
for non-degenerate εeff and μeff , the solution vanishes. A compactness argument
provides a contradiction to the fact that the solution sequence was normalized. For
the details of the argument we refer to [7].

On negative eigenvalues of μeff . For generic shapes of �Y , the tensor μeff has
negative eigenvalues for an appropriate choice of α. Let �Y be such that the real
numbers D0, D2, and

∫
Y\�Y

H0
2 are non-vanishing (the three numbers are averages

of cell-solutions). Formula (2.25) forμeff implies that, for α close to ω2μ0ε0D0/2,
we find (μeff)22 arbitrarily large and with any sign. For a special geometry that
generates negative eigenvalues see [7], the geometry can be used also in the case
of a perfectly conducting material.

1.2. Geometry

The geometry is constructed in two steps. In the first step we describe the
inclusion of the split ring in a single periodicity cell Y . In a second step we combine
many microscopic structures to obtain a macroscopic geometry.

Microscopic geometry We start from the periodicity cube Y = (0, 1)3; since we
will always impose periodicity conditions on the cube Y , we may also regard it as
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Fig. 1. The microscopic geometry, we show a cut with the (y1, y3)-plane. The cell Y =
(0, 1)3 contains the subdomain �Y , which is topologically a full torus (the union of the two
grey regions). The perfect conductor occupies �

η
Y = �Y \Sη

Y (the dark region); it consists

of �Y with the slit region Sη
Y (light grey) removed. The slit has width 2αη, it hence vanishes

in the limit η → 0

the flat torus T3. Let a closed ring inside Y be given by a set �Y ⊂ Y . We assume
that �Y is an open set with C2-boundary, not touching the boundary of Y , i.e.with
�̄Y ∩ ∂(0, 1)3 = ∅. We furthermore assume that �Y is topologically a torus.

In order to define the split ring, we assume that �Y \{(y1, y2, y3)|y1 = 0, y3 >
1
2 } is an open, connected and simply connected set with Lipschitz boundary. The
split ring is defined as

�
η
Y := �Y \

{
(y1, y2, y3)| − αη2 < y1 < αη2, y3 > 1

2

}
. (1.9)

Our construction is such that the slit has the width 2αη2 inside the single periodicity
cell. For ease of notation, we furthermore assume that the slit is a cylinder:

Sη
Y := �Y ∩ {(y1, y2, y3)| − αη2 < y1 < αη2, y3 > 1

2 }
= {(y1, y2, y3)| − αη2 < y1 < αη2, y3 > 1

2 , (0, y2, y3) ∈ �Y } .
(1.10)

Macroscopic geometry We study electromagnetic waves in an open set � ⊂ R
3.

Contained in� is a second domain R ⊂ �with R̄ ⊂ �. The set R consists of meta-
material, whereas on �\R we have relative permeability and relative permittivity
equal to unity (Fig. 1).
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In order to define the microstructure in R, we use indices k ∈ Z
3 and shifted

small cubes Y η
k := η(k + Y ). We denote by K := {k ∈ Z

3|Y η
k ⊂ R} the set of

indices k such that the small cube Y η
k is contained in R. Here and in the following,

in summations or unions over k, the index k takes all values in the index setK. The
number of relevant indices has the order |K| = O(η−3).

Using the unit-cell split rings �
η
Y ⊂ Y , we can now define the meta-material

by setting

�η :=
⋃
k∈K

η(k + �
η
Y ) ⊂ R, �η := �\�η. (1.11)

The set of slits is defined accordingly as Sη := ⋃
k∈K η(k + Sη

Y ). The above
definition of �η closes the description of the system (1.1)–(1.2). Note that we do
not specify boundary conditions on ∂�; if, for example, the solution sequence
(Eη, Hη) satisfies a Dirichlet condition for fixed boundary data, the limit functions
(Ê, Ĥ) will satisfy the same boundary condition.

1.3. Two-Scale Limits and Geometric Averaging

Our aim is to study properties of the sequence (Eη, Hη) of solutions to (1.1)–
(1.2). We obtain these properties by characterizing limits. The most useful object
is the two-scale limit of the sequence.

Two-scale limits Since Eη and Hη are, by assumption, bounded in L2(�) we
can, after extraction of a subsequence, consider the two-scale limits as η → 0:

Eη(x) ⇀ E0(x, y) weakly in two scales, (1.12)

Hη(x) ⇀ H0(x, y) weakly in two scales, (1.13)

for some limit functions E0, H0 ∈ L2(� × Y,C3).

Geometric averaging There are (at least) two possibilities to average a function
u : Y → C

3. The standard averaging procedure is the volumetric average, given
by the integral over Y . We introduce here another averaging procedure, which
associates to curl-free fields u : Y → C

3 their line integrals.
In the subsequent definition, � is assumed to be connected, but we do not

demand � to be simply connected. Actually, inclusions � that are not simply con-
nected are our motivation to modify the original definition of a geometric average
which was used in [4]. In contrast to the slightly generalized geometric average in
[29] which combines the advantages of both approaches, we consider here only the
case that the inclusion does not touch the sides of the cube, �̄ ⊂ (0, 1)3. We will
apply the lemma with � = �Y .

The definition uses the unit vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),
and three of the edges, parametrized with γk : [0, 1] → Y , t 	→ tek . We note that,
since opposite sides are identified, the cube has only these edges; they are in the
interior ofY\�̄. The geometric average is definedwith line integrals.We emphasize
that line integrals are not well-defined for general functions of class H1, but they
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are well-defined for functions with vanishing curl. The argument exploits that line
integrals of smooth curl-free functions are invariant under deformations; for more
details on the argument we refer to Definition 2.7 of [29].

Definition 1.2. (Geometric averaging) Let� ⊂ �̄ ⊂ (0, 1)3 be a connected subset
of the flat torus Y and let H : Y\� → C

3 be a field of class H1
� (Y\�,C3) with

curly H = 0 in Y\�̄. The geometric average of H is a vector
∮

H ∈ C
3; for

k = 1, 2, 3, the k-th component of
∮

H is defined as a line integral over the edge
γk : [0, 1] → Y , t 	→ tek , (∮

H

)
k

:=
∫

γk

H · τ, (1.14)

where τ = ek is the tangential vector of the curve γk .

We remark that, due to the periodicity of H , the edge γk of the torus Y is inside
the domain Y\�. More important is the following observation: for every curve
γ̃k that connects a point y0 ∈ ∂(0, 1)3 with y0 + ek ∈ ∂(0, 1)3 and that can be
obtained with an homotopy in Y\� from the curve γk along the edge, the integral
has the same value:

∫
γ̃k

H · τ = ∫
γk

H · τ . This is a consequence of curly H = 0

in Y\�̄. This fact also shows that the line integral is well defined even though we
only assumed H ∈ H1(Y\�).

Geometric limits Starting from L2(�)-bounded sequences Eη and Hη we want
to define, in the appropriate sense of averaging, limit functions Ê and Ĥ in L2(�).

Regarding the sequence Eη, we choose to define the limit Ê as the weak limit
of Eη in L2(�),

Ê := w − lim
η

Eη, Ê(x) =
∫

Y
E0(x, y) dy. (1.15)

For convenience we recalled in the second equality of (1.15) a property of the
two-scale limit E0.

Instead, regarding Hη, we start from the two-scale limit H0(x, y) as defined in
(1.13) and define Ĥ as the geometric average of that limit according to Definition
1.2,

Ĥ(x) :=
∮

H0(x, .). (1.16)

Aproperty of the geometric average The above definition of a geometric average
is justified by the fact that geometric averages appear in the macroscopic equations.
The underlying reason for this fact is the following property:

Lemma 1.3. (A property of the geometric average) Let � ⊂ Y be as in Defini-
tion 1.2. We consider H ∈ H1

� (Y\�,C3) with curly H = 0 in Y\�̄. On a second

function E ∈ H1
� (Y,C3) we assume curly E = 0 in Y and E = 0 on �. Then there

holds ∫
Y\�

H ∧ E =
(∮

H

)
∧

∫
Y

E . (1.17)
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Proof. Since E has vanishing curl in Y , we can write E as a gradient of some
function φ ∈ H1((0, 1)3,C). Since E vanishes on the connected set�, the function
φ is constant on �. We may assume the constant to be zero, hence

E = ∇φ in (0, 1)3, φ = 0 in �.

We emphasize that φ is, in general, not a periodic function. We calculate the mis-
match for two opposite points z0, z1 := z0 + ek ∈ ∂(0, 1)3. Connecting the two
points with the curve γ : t 	→ z0 + tek we find

φ(z1) − φ(z0) =
∫

γ

∇φ · τ =
∫

γ

E · τ =
∫

Y
E · ek .

The last equality requires some explanation, which we give for k = 3: The line
integral over γ is independent of the point z0 ∈ (0, 1)2 ×{0} since E has vanishing
curl (we recall that the sides are identified). We can integrate over all z0 and obtain
the last equality.

The result of the above calculation is that the difference of the φ-values on
opposite faces is given by the volume average of E .

We can now calculate the left hand side of (1.17) with an integration by parts.
Using that curly H = 0 holds in the set where φ �= 0, we find∫

Y\�
H ∧ E =

∫
(0,1)3

H ∧ ∇φ =
∫

∂(0,1)3
H ∧ ν φ.

We evaluate this boundary integral. For every k ≤ 3 we consider the faces F−
k :=

{yk = 0} with normal ν = −ek and F+
k := {yk = 1}, with normal ν = ek . This

yields, by periodicity of H ,

∫
Y\�

H ∧ E =
∫

∂Y
H ∧ ν φ =

3∑
k=1

[∫
F+

k

H ∧ ek φ −
∫

F−
k

H ∧ ek φ

]

=
3∑

k=1

(∫
F+

k

H ∧ ek

)(∫
Y

E · ek

)
.

On the face F+
k , the integrand H ∧ ek consist of the two tangential components

of H . The face F+
k can be written as a union of straight lines. Recalling that all

line integrals over tangential components of H coincide because of curly H = 0,
we obtain that the F+

k -integral coincides with the line integrals of the geometric
average (1.14). We can therefore write

∫
Y\�

H ∧ E =
3∑

k=1

(∮
H

)
∧ ek

(∫
Y

E · ek

)
=

(∮
H

)
∧

∫
Y

E .

This provides (1.17) and hence the lemma. �
We note that the original definition of a geometric average in [4] was expressed

in terms of formula (1.17). This definition was also used, e.g., in [21]. Our new
definition is in terms of line integrals and has the advantage that more complex
obstacles � can be treated, e.g., obstacles where Y\� is not simply connected.
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2. Cell Problems and Effective Coefficients

It is a standard procedure to collect the equations for the two-scale limit of a
sequence of solutions. In this section, we collect the cell problems for E0 and for
H0 from (1.12)–(1.13). The important step is to find linearly independent solutions
to the cell-problems such that the two-scale limits E0 and H0 can be written as
linear combinations of these basis functions.

2.1. Cell Problem for E0

We investigate the two-scale limit function E0 of (1.12). For x ∈ R the map
Y � y 	→ E0(x, .) ∈ C

3 solves the following equations:

curly E0 = 0 in Y, (2.1)

divy E0 = 0 in Y\�̄Y , (2.2)

E0 = 0 in �Y , (2.3)

E0 is periodic in Y. (2.4)

This set of equations follows easily from the properties of two-scale convergence:
(1.3) implies (2.1) and (1.2) implies (2.2). Equation (2.3) follows from the fact that
we considered trivially extended fields Eη and that the slit domains Sη

Y ⊂ Y vanish
in the limit η → 0. The periodicity (2.4) is always satisfied by construction of
two-scale limits.

The equations can be solved with the help of three shape functions. We observe
that the first equation implies that E0(x, .) = E(x)+∇yφ(x, .), where φ is a scalar
periodic potential in H1

� (Y,C) and E(x) denotes the average of E0(x, ·) on the unit
cell. The second equation implies that φ is harmonic in Y\�̄, the third equation
yields that φ(y) + E(x) · y is constant on the connected subset �. Therefore, for a
given average electric field E(x), the periodic function φ is determined uniquely by
the affine boundary values on ∂�, we demand φ(y) = −E(x) · y for y ∈ �. In the
above construction, there were only 3 degrees of freedom for E0, the components of
the vector E(x) of the volume average. The solution space to (2.1)–(2.4) is therefore
three-dimensional. We denoted the volume average by E(x) since the Y -average
of the two-scale limit E0 coincides with the weak limit E .

We collect our results. The two-scale limiting electric field E0(x, .) can be
written as a linear combination

E0(x, y) =
3∑

k=1

Ek(x) Ek(y), (2.5)

where the real valued shape functions Ek(y) := ek +∇φk(y) are given in terms of
φk , which is the unique solution in H1

� (Y ) of

�φk = 0 in Y\�̄Y , φk = −yk on �̄Y . (2.6)
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The tensor εeff By construction, the fields E1, E2, and E3 satisfy
∫

Y Ek ·el = δkl

and form a basis of the space of solutions for the E0-cell problem. However, they
are not orthonormal with respect to the usual scalar product in L2(Y ). We define
the tensor εeff := (εeff)kl ∈ R

3×3 by setting

(εeff)kl :=
∫

Y
Ek(y) · El(y) dy. (2.7)

2.2. Cell-Problem for H0

The magnetic field H0(x, .) satisfies

curly H0 = 0 in Y\�̄Y , (2.8)

divy H0 = 0 in Y, (2.9)

H0 = 0 in �Y , (2.10)

H0 is periodic in Y. (2.11)

Once more, this cell problem is an immediate consequence of two-scale conver-
gence properties and the definition of H0 in (1.13). Equation (2.8) follows from
(1.2) and Eq. (2.9) follows from (1.4).

With respect to the cell-problem (2.1)–(2.4) for E0, the role of divy and curly
are interchanged (in terms of the domain). This difference leads to a much richer
structure of the solution space to (2.8)–(2.11); due to the fact thatY\�Y is not simply
connected but contains one nontrivial curve, the solution space of (2.8)–(2.11) has
one extra dimension—it is four-dimensional.

We derive this result in the following proposition,which is central to the analysis
of the ring geometry: for closed rings, the solution space for the H -problem is
four-dimensional. The extra dimension in the H -problem makes resonance effects
possible and leads to the negative effective permeability for appropriate parameters.

The result of the subsequent proposition is classical vector calculus. We con-
struct non-trivial curl-free fields in domains that are not simply connected. Due to
its importance in this study,we include the quite elementary proof for completeness.

Proposition 2.1. (Themagnetic cell-problem) Let �Y ⊂ Y be as described in Sect.
1.2, topologically a full torus. Then the solution space to problem (2.8)–(2.11)
is four-dimensional and spanned by four shape functions Hk(y), k = 0, 1, 2, 3.
The shape functions are uniquely determined as solutions of (2.8)–(2.11) with
the following normalization: for a closed curve γ0 : [0, 1] → (0, 1)3\�Y with
tangential vector τ which winds once through the closed ring �Y , there holds

∮
Hk = ek,

∫
γ0

Hk · τ = 0 for k ∈ {1, 2, 3}, and (2.12)

∮
H0 = 0,

∫
γ0

H0 · τ = 1. (2.13)
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Proof. In this proof, which concerns only functions on the unit cube Y , we write
� instead of �Y for brevity.

Step 1: Construction of Hk, k = 1, 2, 3 For fixed k ∈ {1, 2, 3}, our aim is to
construct Hk as we constructed Ek in the lines before (2.6). We use the ansatz
Hk(y) = ek + ∇φk(y), now φk is a periodic solution of the Neumann-problem

�φk = 0 in Y\�̄Y , ν · ∇φk = −ν · ek on ∂�Y , (2.14)

where ν is the exterior normal vector field for �. This set of equations can be
solved with φk ∈ H1

� (Y\�) with the Lax-Milgram theorem (prescribing e.g. that

the average of φk vanishes). We set Hk(y) = ek + ∇φk(y) for y ∈ Y\�̄ and
Hk(y) = 0 for y ∈ �̄.

Let us check that Hk is indeed a solution of the cell-problem.As a gradient field,
Hk satisfies (2.8). Since φk is harmonic, Hk satisfies (2.9) in Y\�̄. The boundary
condition for φk implies that the normal component of Hk vanishes on ∂�; this
provides (2.9) in Y . Properties (2.10) and (2.11) hold by construction.

We next determine the geometric average of Hk by calculating line integrals.
Along the curve γ j , j = 0, 1, 2, 3, we obtain

∫
γ j

Hk · τ =
∫

γ j

(ek + ∇φk) · τ = δk j . (2.15)

This provides the normalization property (2.12).
Step 2: Construction of H0 The construction of H0 requires a refined con-

struction, since we have to exploit the fact that the complement of the full torus is
not simply connected. In a first step, we choose a smooth surface (with boundary)
D ⊂ Y\�̄ that “closes the hole of the torus”. We demand that the boundary curve
D̄ ∩ ∂� is a closed curve and that Y\(�̄ ∪ D) is simply connected.

For a function φ : Y\� → R that possesses a trace on both sides of D, we
denote by [φ]D : D → R the jump of the function φ (we fix an arbitrary convention
for the sign). We use the affine function space

Z :=
{

φ ∈ H1
� (Y\(�̄ ∪ D))

∣∣∣∣ [φ]D = 1

}
. (2.16)

On Z , we study the minimization problem for the Dirichelet energy. Find φ ∈ Z
such that

I (φ) := 1

2

∫
Y\(�̄∪D)

|∇φ|2 = min
ϕ∈Z

I (ϕ) . (2.17)

We emphasize that we evaluate∇φ on the set Y\(�̄∪ D), where the gradient exists
by definition of Z because of φ ∈ Z . In the definition of I , we integrate the squared
norm of this function (in other words, we integrate the squared norm of the regular
part of ∇φ). Minimization of the convex functional in (2.17) is possible with the
direct method.

Let φ0 ∈ Z be a solution of the minimization problem (2.17). We set H0 :=
∇φ0 in Y\(�̄ ∪ D). We extend trivially, setting H0(y) = 0 for y ∈ �̄.
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It remains to check the properties of H0. For every function ρ ∈ C1
� (Y\�) and

every ε ∈ R, the function φ0 + ερ is contained in Z (the function φ0 + ερ still has
the jump 1 across D). This implies the Euler–Lagrange equation

∫
Y\�̄

∇φ0 · ∇ρ = 0. (2.18)

The Euler–Lagrange equation implies, in a first step, �φ0 = 0 in Y\(�̄ ∪ D). In
a second step (with an integration by parts), (2.18) implies the boundary condition
ν ·∇φ0 = 0 along ∂� (ν the normal on ∂�) and [ν ·∇φ0] = 0 along D (ν the normal
on D). These properties imply that H0 satisfies (2.9) inY . As a gradient, H0 satisfies
(2.8) in Y\(�̄ ∪ D). Equations (2.10) and (2.11) are satisfied by construction.

It remains to check (2.8) across the interface D. In a neighborhood of a point
y ∈ D, we can consider the function φ̃0, defined as φ̃0 = φ0 on one side of D and
φ̃0 = φ0 + 1 on the other side of D. The construction is made such that φ̃0 has a
vanishing jump across D. This fact implies that the function φ̃0 is of class H1 in a
neighborhood of y. By (2.18), φ̃0 is harmonic and hence locally of class H2. This
implies that the traces of ∇φ0 = ∇φ̃0 have no jumps across D; we conclude that
H0 is locally of class H1. This yields (2.8) in Y\�̄.

The calculation of line integrals is as in (2.15) of Step 1. Line integrals of H0

over the curves γ j , j = 1, 2, 3, vanish by periodicity of φ0. Instead, the line integral
over γ0 is (we assume that γ0 : [0, 1] → Y starts and ends in a point y0 ∈ D and
is entirely contained in Y\(�̄ ∪ D))

∫
γ0

H0 · τ =
∫

γ0

∇φ0 · τ = lim
t↗1

φ0(γ0(t)) − lim
t↘0

φ0(γ0(t)) = ± 1. (2.19)

Upon reversing the sign, we obtain the normalization property (2.13).
Step 3: Conclusion of the proof We have constructed four solutions Hk , k =

0, 1, 2, 3, to the cell problem. The normalizations (2.12)–(2.13) show that the solu-
tions are linearly independent, hence the solution space is at least four-dimensional.

In order to show that the solution space has atmost four dimensions, it suffices to
show that if solves the cell-problemwith vanishing normalization, i.e.,with

∮
u = 0

and
∫
γ0

u · τ = 0, then u necessarily vanishes.
To show this result, we construct a scalar potential� for the vector field u in the

classical way (as in the proof of the statement “closed one-forms are exact”, known
as “Poincaré lemma”). For any point y ∈ Y\�̄ we choose a smooth curve γ̃ with
tangential vector τ that connects 0 and y, and set�(y) := ∫

γ̃
u ·τ . Due to curly u =

0 and the normalizations, the potential� is well-defined (independent of the choice
of γ̃ ) and periodic, it satisfies u = ∇�. Since u has a vanishing divergence, � is
harmonic. Since u vanishes on�, the potential� satisfies a homogeneousNeumann
condition on ∂�. Integration by parts gives

∫
Y\� ∇� · ∇� = 0 and it follows that

� is constant. In particular, the gradient u = ∇� vanishes. This shows that the
four normalization conditions determine u uniquely. �

The fast-scale microscopic magnetic field H0(x, .) is a solution of the mag-
netic cell problem. Proposition 2.1 implies that it can hence be written as a linear
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combination of the four cell solutions:

H0(x, y) =
3∑

k=0

hk(x) Hk(y). (2.20)

The amplitude factor hk(x) tells us how much of the cell solution Hk is present in
a macroscopic point x ∈ R. The result of the slit analysis of the next section will
be an expression for h0(x) in terms of h1(x), h2(x), h3(x).

The Tensor μeff For points x ∈ R, the effective permeability is defined such that
Y -averages can be expressed by geometric averages. More precisely, we want to
define μeff such that, for x ∈ R,

H(x) = μeff Ĥ(x). (2.21)

Let us investigate this relation with the help of (2.20). The weak limit is the
arithmetic average of H0, which takes the form

H(x) =
∫

Y\�Y

H0(x, y)dy =
3∑

k=0

hk(x)

∫
Y\�Y

Hk . (2.22)

By (1.16), the geometric average is

Ĥ(x) =
∮

H0(x, .) =
3∑

k=0

hk(x)

∮
Hk = (h1(x), h2(x), h3(x)). (2.23)

Because of (2.21), our aim is to define the effective permeability tensor μeff such
that

(∫
Y\�Y

H0
)

h0(x) +
3∑

k=1

(∫
Y\�Y

Hk
)

hk(x) = μeff · (h1, h2, h3)(x). (2.24)

We anticipate the result of the next section. For constants Dk ∈ R we derive in
(3.19) the formula

h0(x) = ω2μ0ε0

2α − ω2μ0ε0D0

3∑
k=1

Dkhk(x).

We demand that (2.24) holds for every vector (h1, h2, h3)(x) if h0(x) is given as
above. This leads to the choice, for 1 ≤ j, k ≤ 3,

(μeff) jk =
(∫

Y\�Y

Hk
)

j

+ ω2μ0ε0

2α − ω2μ0ε0D0
Dk

(∫
Y\�Y

H0
)

j

. (2.25)

The numbers Dk are defined in (3.9).
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3. Slit Analysis

The slit analysis is the core of the analysis of the split ring geometry. At this
point, we make the connection between the capacitor (the slits Sη) and the induc-
tance (the rings �η). The result of the analysis is a relation between the strength
h0 of the special field H0 (which points through the ring) and the other fields Hk ,
k = 1, 2, 3.

On a more technical level, our analysis is based on the following idea: we
calculate, in two different ways, the average of the field Eη in the slit Sη. More
precisely, we investigate, for a smooth cut-off function θ , limits of the expression

∫
Sη

1

η
Eη(x) · e1 θ(x) dx . (3.1)

Once we have determined the limit of the expression in (3.1), we can conclude
also a slightly stronger statement. To formulate this statement, we define a Radon
measure mη ∈ M(�) with the help of the density of (3.1), and we set

mη := 1Sη

1

η
Eη · e1 L3 , (3.2)

where L3 is the three dimensional Lebesgue measure and the function 1Sη is the
characteristic function of the set Sη. The Cauchy–Schwarz inequality implies the
boundedness of

‖mη‖M(�) =
∥∥∥∥1Sη

1

η
Eη(x) · e1

∥∥∥∥
L1(�)

≤
(∫

Sη

|Eη|2
)1/2 (∫

Sη

η−2

)1/2

≤ C ,

where we used in the last step that the volume of Sη is of order η2. We can extract
a subsequence η → 0 and find a limit measure m ∈ M(�̄) such that mη ⇀ m
weak-∗ in the sense of measures.

Calculating the limit of the expression in (3.1), which is nothing else than∫
�

θ dmη, we determine the distributional limit of the sequence mη. Since the
distributional limit and the measure limit coincide, we have thus determined the
limit measure m. In this way, we will compute a first expression for m in Sect. 3.1.
We will then compute another formula for m by a different approach in Sect. 3.2.
Comparison of the two expressions for m provides the desired formula (3.19).

3.1. Large Circles and E-Equation

In order to state the formulas for the limit measure m, we need the four effective
quantities D0, D1, D2, D3. They are defined with the help of a special field χ :
Y → R

3.
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Construction of Test-Functions We want to construct a field χ : Y → R
3 that

has similar character as our special H -field H0; our specific requirement here is
that curlyχ = e1 inside the slit of the ring.

Lemma 3.1. (The field χ ) There exists a number η0 > 0 and a field χ ∈ L2(Y,R3)

with

τ := curly χ ∈ L2(Y,R3), (3.3)

τ ≡ 0 in Y\� and τ ≡ e1 in Sη0 , (3.4)

with the normalization
∫

Y
Ek(y) ∧ χ(y) dy = 0 (3.5)

for k = 1, 2, 3.

We note that, by our assumption on the slits Sη, there holds τ ≡ e1 in Sη for
every η ≤ η0.

Proof. We start by constructing a field τ : Y → R
3 which lives on the closed ring.

For some η0, we demand τ ≡ e1 in the slit Sη0 . We next choose an extension of τ

to all of Y with the properties

τ = 0 in Y\�̄, (3.6)

divy τ = 0 in Y, (3.7)

Since the field τ has a vanishing divergence, it also has a vanishing average due to∫
Y τ · el = ∫

Y τ · ∇ yl = 0. This implies that τ possesses a periodic vector potential
χ with curly χ = τ . The potential χ is already the desired field, it only remains
to choose an appropriate average value of χ in order to satisfy the normalization
(3.5).

We start by calculating the wedge-product of χ with Ek , using Ek(y) = ek +
∇φk(y) and φk(y) = −yk from (2.6):

∫
Y

Ek(y) ∧ χ(y) dy =
∫

Y
(ek + ∇φk(y)) ∧ χ(y) dy

= ek ∧
∫

Y
χ(y) dy −

∫
Y

φk(y) curly χ(y) dy

= ek ∧
∫

Y
χ(y) dy +

∫
�

yk τ(y) dy.

The result contains the volume average P and the weighted τ -integrals Nkl for
k, l = 1, 2, 3:

P :=
∫

Y
χ(y) dy, Nkl :=

∫
�

yk τl(y) dy.
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We observe that, for 1 ≤ k, l ≤ 3, there holds

0 = −
∫

Y
yk yl divyτ(y) dy =

∫
�

∇(yk yl) · τ(y) dy

=
∫

�

ykτl(y) + ylτk(y) dy = Nkl + Nlk .

Hence the matrix N ∈ R
3×3 is skew-symmetric. It can therefore be expressed with

a vector P ∈ R
3 such that

el ·
∫

Y
Ek(y) ∧ χ(y) dy = el · (ek ∧ P) − Nkl = 0 (3.8)

for 1 ≤ k, l ≤ 3. This is the normalization condition (3.5).
Given thefield τ (whichprovides thematrix N ),we can choose a vector potential

χ with the average P as in (3.8). This provides the field χ with all the desired
properties. �

With the function χ of Lemma 3.1 and the cell solutions Hk we define coeffi-
cients Dk ∈ R as

Dk :=
∫

Y
Hk(y) · χ(y) dy. (3.9)

Calculation of Limits This subsection is devoted to the first way of calculating
the limit measure m, starting from the expression for the Eη-integral of (3.1).
With χ of Lemma 3.1 and a cut-off function θ ∈ D(R) we construct the function
x 	→ θ(x)χ(x/η) and use it as a test-function in (1.1). Using two-scale convergence
and (2.20) we obtain∫

�

curl Eη(x) · θ(x)χ(x/η) dx = iωμ0

∫
�

Hη(x) · θ(x)χ(x/η) dx

→ iωμ0

∫
�

3∑
k=0

hk(x)θ(x)

∫
Y

Hk(y) · χ(y) dy dx

= iωμ0

∫
�

3∑
k=0

Dk hk(x)θ(x) dx .

On the other hand, we can evaluate the left hand side with an integration by parts,∫
�

curl Eη(x) · θ(x)χ(x/η) dx =
∫

�

Eη(x) · curl (θ(x)χ(x/η)) dx

=
∫

Sη

Eη · e1θ
1

η
+

∫
�

Eη · (∇θ ∧ χ(./η)).

The first term is the slit integral of the E-field which we want to evaluate. The
second term on the right hand side can be calculated using two-scale convergence.
As η → 0, there holds
∫

�

Eη · (∇θ ∧ χ(./η)) →
3∑

k,l=1

∫
�

Ek(x)∂lθ(x)

∫
Y

Ek(y) · (el ∧ χ(y)) dy dx .
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The Y -integral vanishes by the normalization (3.5) in the construction of the fieldχ .
Our result is the following limit expression for the slit integral of (3.1): as η → 0,
there holds

∫
Sη

Eη(x) · e1 θ(x)
1

η
dx → iωμ0

∫
�

3∑
k=0

Dk hk(x) θ(x) dx . (3.10)

With (3.10), we have calculated the distributional limit of the measures mη of
(3.2). The distributional limit coincides with the measure valued weak-∗ limit, we
have therefore determined the limit measure m:

m = iωμ0

3∑
k=0

Dk hk(x) dL3. (3.11)

3.2. Small Circles and H-Equation

The aim of this section is to calculate slit integrals of (3.1) in another way. This
will provide a new formula for the limit measure m. Comparison with (3.11) yields
the desired relation on the macroscopic factors h j (x).

Let us sketch the idea behind this second calculation: We think of a two-
dimensional disk D ⊂ Y that does not touch the split ring, D ⊂ Y\�η

Y . To obtain
a nontrivial result, we assume that D lies (partially) in the slit Sη; more precisely,
we assume that the boundary line of D is a closed curve � ⊂ Y\�Y , which is,
topologically, a nontrivial curve in Y\�Y .

TheStokes theorem implies that the (two-dimensional) D-integral over (curl H)·
n (where n is the normal to D) coincides with the (one-dimensional)�-integral over
H · τ (where τ is a tangential vector on �). Using equation (1.2) we obtain, loosely
speaking, that the D-integral over −iωε0E · e1 coincides with the �-line-integral
over H . The first is the slit integral (up to the factor −iωε0 and a factor 2α for the
width of the slit). The latter is the amplitude of the part of H that winds through
the ring—essentially h0. We recover this result by a rigorous calculation in (3.17).

Construction of Test-Functions We now perform the argument rigorously with
the help of test-functions. We recall that the slit Sη

Y in the single cell Y is contained
in a slab Fη

Y of width 2αη2, in formulas Sη
Y ⊂ Fη

Y := {(y1, y2, y3) ∈ Y | − αη2 <

y1 < αη2}. We define the test function ση : Y → R
3 as follows:

ση(y) :=
⎧⎨
⎩
0 for y ∈ Y\Fη

Y
e1 for y ∈ Sη

Y
σδ(y2, y3)e1 for y ∈ Fη

Y \Sη
Y ,

(3.12)

where σδ is a smooth functionR2 → R. It has values 1 for arguments (y2, y3) such
that (0, y2, y3) ∈ Sη

Y , and it vanishes in a distance δ > 0 from this set.
By construction, the curl of ση(y) vanishes outside Fη

Y and in the slit Sη
Y . We

consider the curl in an appropriate scaling,

ρη(y) := 1

η2
curly ση(y) = 1

η2

⎛
⎝ 0

∂y3σδ

−∂y2σδ

⎞
⎠ (y2, y3) 1Fη

Y
(y). (3.13)
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We furthermore have to localize in themacroscopic variable. In this calculation,
we cannot use a smooth cut-off function, but have to use a different localization
argument. In what follows, P ⊂ R ⊂ � shall be an arbitrary set that is given, for
some η0 > 0, by a union over cubes P = ⋃

k∈KP
η0(k + Y ) for some KP ⊂ Z

n .
In this section, the cut-off function θ is not a smooth function, but the indicator
function,

θ(x) := 1P (x) =
{
1 x ∈ P,

0 x �∈ P.
(3.14)

Calculation of Limits With θ and ση as above, we use x 	→ 1
η
θ(x)σ η(x/η) as a

test-function in (1.2). We obtain, on the one hand,
∫

�

curl Hη(x) · 1
η
θ(x)σ η(x/η) dx = −iωε0

∫
�

Eη(x) · 1
η
θ(x)σ η(x/η) dx

= −iωε0

∫
Sη

Eη(x) · e1
1

η
θ(x) dx − iωε0

∫
�\Sη

Eη(x) · 1
η
θ(x)σ η(x/η) dx .

(3.15)

The first integral on the right hand side is the slit integral that we want to calculate.
The other integral can be estimated by

∣∣∣∣∣
∫

�\Sη

Eη(x) · 1
η
θ(x)σ η(x/η) dx

∣∣∣∣∣
2

≤ ‖Eη‖2L2(�η)

∫
�\Sη

1

η2
|θ(x)σ η(x/η)|2 dx ≤ Cδ ,

since the support of ση has a volume of order η2 and a support of order δη2 when
the set Sη is removed. We therefore obtain, up to errors of order δ, the desired slit
integral over Eη on the right hand side of (3.15).

On the other hand, we can calculate the left hand side of (3.15) with an integra-
tion by parts. We exploit the fact that ση vanishes on the boundary of Y , whence
ση(./η) vanishes on the boundary of the set P (which is aligned with the cells for
all η ≤ η0), so we have

∫
�

curl Hη(x) · 1
η
θ(x)σ η(x/η) dx

=
∫

P
Hη(x) · η−2(curlyσ

η)(x/η) dx =
∫

P
Hη(x) · ρη(x/η) dx

=
∫

P
Hη(x) · ρη0(x/η) dx +

∫
P

Hη(x) · (ρη(x/η) − ρη0(x/η)
)
dx . (3.16)

In the last equality, we inserted a zero. The first integral has a limit as η → 0 by
the defining property of two-scale convergence,

∫
P

Hη(x) · ρη0(x/η) dx →
∫

P

∫
Y

H0(x, y) · ρη0(y) dy dx .
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The Y -integral can be evaluated by our choice of a test-function. For almost every
x ∈ � that holds, using integration by parts with normal vector ν on ∂�Y and
curly H0 = 0,

∫
Y

H0(x, y) · ρη0(y) dy =
∫

Y\�Y

H0(x, y) · 1

η20
curlyσ

η0(y) dy

= 1

η20

∫
F

η0
Y ∩∂�Y

H0(x, y) · (ν(y) ∧ e1)

= 1

η20

∫
F

η0
Y ∩∂�Y

3∑
k=0

hk(x)Hk(y) · τ(y)

= 2αh0(x).

In the last step we used that τ = ν ∧ e1 is a tangential field along curves and the
Fubini theorem to write the surface integral as an average of line integrals (the
average is over y1 ∈ (−αη20, αη20)); all line integrals are, by our normalization of
the functions Hk(y), equal to δ0,k .

The other term on the right hand side of (3.16) is small. To show this, we
write the difference ρ̂η(y) := ρη(y) − ρη0(y) as the curl of some vector potential
ψ

η
Y , curly ψ

η
Y = ρ̂η. Here, we use the fact that ρ̂η has vanishing divergence and a

vanishing flux around the torus � (since ρη(y) and ρη0(y) have identical fluxes).
This implies that we can find a potential ψη

Y that vanishes on the boundary ∂(0, 1)3

of the unit cell and on the boundary ∂�Y , see Lemma A.1 in the appendix for the
existence of ψ

η
Y . We claim that the potentials ψ

η
Y are bounded in L2(Y ). Using the

estimate of Lemma A.1, it suffices to show an H−1(Y )-bound for ρ̂η. The latter
follows from the following calculation for a smooth test-function ϕ : Y → R

3,
using g(y2, y2) = (0, ∂y3σδ,−∂y2σδ)(y2, y3),

〈ρ̂η, ϕ〉 =
∫ 1

0

∫ 1

0
g(y2, y3)

∫ 1

0

[
1

η2
1Fη

Y
(y) − 1

η20
1F

η0
Y

(y)

]
ϕ(y) dy1 dy2 dy3

= 2α
∫ 1

0

∫ 1

0
g(y2, y3)

[
−
∫ αη2

−αη2
ϕ(y) dy1 − −

∫ αη20

−αη20

ϕ(y) dy1

]
dy2 dy3,

hence

∣∣〈ρ̂η, ϕ〉∣∣ ≤ 2α
∫ 1

0

∫ 1

0
g(y2, y3)

∫ αη20

−αη20

|∂y1ϕ(y)| dy1 dy2 dy3 ≤ C‖ϕ‖H1(Y ).

This calculation shows that the potentials ψ
η
Y are bounded in L2(Y ).

Using the potential ψ
η
Y and the support Pη ⊂ P of the function P � x 	→

ψ
η
Y (x/η) we can calculate
∫

P
Hη(x) · (

ρη(x/η) − ρη0(x/η)
)
dx =

∫
Pη

Hη(x) · curly ψ
η
Y (x/η) dx

= η

∫
P
curlx Hη(x) · ψ

η
Y (x/η) dx → 0
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by L2(�η)-boundedness of curlx Hη(x) and ψ
η
Y (./η).

Collecting the results from (3.15) and (3.16) we find for the limit η → 0

mη(P) =
∫

Sη

Eη(x) · e1
1

η
θ(x) dx → 2α

−iωε0

∫
P

h0(x) dx + O(δ). (3.17)

The limit of the left hand side exists by choice of the subsequence η, the limit is
given by m(P). Since δ was arbitrary, (3.17) gives the desired second relation for
m.

Result of the Slit Analysis

It remains to compare the two expression for m obtained in (3.17) and in (3.11).
We obtain

2α

−iωε0
h0(x) = iωμ0

3∑
k=0

Dkhk(x). (3.18)

This provides a frequency-dependent formula for h0 in terms of h1, h2, h3:

h0(x) = ω2μ0ε0

2α − ω2μ0ε0D0

3∑
k=1

Dkhk(x). (3.19)

4. Macroscopic Constitutive Laws

In the subsequent calculations we use, additionally to the geometric limits Ê
and Ĥ , also the weak limits Eη ⇀ E = Ê and Hη ⇀ H in L2(�).
Limit process in (1.1) We can take the distributional limit of (1.1) (or, more pre-
cisely, since we consider the trivial extensions, the distributional limit of Eq. (1.3)).
We obtain, in the limit η → 0,

curl Ê ← curl Eη = iωμ0Hη → iωμ0H = iωμ0μ̂Ĥ . (4.1)

We recall that the last equation is a consequence of the definition of μ̂ and Ĥ , see
(2.21) together with μ̂ = μeff in R and μ̂ = 1 in �\R. The above distributional
limit equation already provides (1.6), the first of the two effective equations.
Limit process in (1.2). We use an oscillating test-function. We choose a smooth
function θ : � → R with compact support and fix j ∈ {1, 2, 3}. We consider
ψη(x) = E j

η(x) θ(x) with E j
η(x) = E j (x/η). The second Maxwell equation (1.2)

yields

∫
�

curl Hη · ψη = − iωε0

∫
�

Eη · ψη. (4.2)
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It remains to evaluate the limits of both sides of (4.2).We start with the left hand
side. In the subsequent calculation we use first integration by parts and curly E j =
0, then the property of two-scale convergence. We get∫

�

curl Hη · ψη =
∫

�

Hη · curlψη = −
∫

�

Hη(x) · (E j
η(x) ∧ ∇θ(x)) dx

→ −
∫

�

∫
Y

(
H0(x, y) ∧ E j (y)

)
· ∇θ(x)) dy dx

(1.17)= −
∫

�

(∮
H0(x, .)

)
∧

(∫
Y

E j
)

· ∇θ(x) dx

(1.16)= −
∫

�

Ĥ(x) ∧ e j · ∇θ(x) dx =
∫

�

(curl Ĥ) · e j θ .

Wenow calculate the limit of the right hand side of (4.2). In the first equality, we
use that E j

η(x) vanishes on�η ∪Sη, in the second we use two-scale convergence. In
the last equation we use the definition of εeff and the fact that ε̂ from (1.8) coincides
with εeff in R to get∫

�

Eη · ψη =
∫

�\(�η∪Sη)

Eη(x) · E j
η(x) θ(x) dx

→
∫

�

∫
Y

E0(x, y) · E j (y) θ(x) dy dx
(2.7)=

∫
�

ε̂E(x) · e j θ(x) dx .

Since j ∈ {1, 2, 3} and θ = θ(x) are arbitrary, (4.2) implies

curl Ĥ(x) = −iωε0ε̂(x) E(x)

for almost every x ∈ �. Because of Ê = E , we have obtained the effective equation
(1.7). This concludes the proof of the main theorem.

Appendix A. Construction of Vector Potentials

In the slit analysis, we made use of Lemma A.1. The lemma is applied with the
domain T that is not the torus�; the torus T lies in the complement Y\� and winds
around the torus �. The essential part of this lemma can be found as Theorem 3.17
of [2]. Since very general domains are studied in [2], we have chosen to provide a
sketch of proof here.

Lemma A.1. (Construction of vector potentials in tori) Let T ⊂ T̄ ⊂ (0, 1)3 = Y
be an open subset which is, topologically, a torus. Let D ⊂ T be a two-dimensional
surface such that T \D is simply connected. We assume that ∂T and D are of class
C2 and denote a normal vector field on D by n and a normal vector field on ∂T by
ν. Let ρ : T → R

3 be a vector field of class L2(T ) with the properties

div ρ = 0 in T, (A.1)

ρ · ν = 0 on ∂T, (A.2)∫
D

ρ · n = 0. (A.3)
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Then there exists a vector potential ψ : T → R
3 satisfying

curlψ = ρ in T, (A.4)

divψ = 0 in T, (A.5)

ψ ∧ ν = 0 on ∂T . (A.6)

For a constant C ≥ 0 that depends on T but not on ρ, we can achieve

‖ψ‖L2(T ) ≤ C‖ρ‖H−1(T ) . (A.7)

Proof. Construction of the potential We consider the space

X :=
{
ψ ∈ H1(T,R3) |ψ ∧ ν = 0 on ∂T

}
, (A.8)

and the bilinear form a : X × X → R,

a(ψ, ϕ) :=
∫

T
curlψ · curl ϕ +

∫
T
divψ div ϕ. (A.9)

We start with an investigation of the kernel of the corresponding operator. Let
ψ ∈ X be a function with a(ψ,ψ) = 0. Then divψ = 0 and curlψ = 0 hold
by definition of a. As a curl-free function, ψ is locally the gradient of a harmonic
function �. The boundary condition in the space X implies that all integrals over
ψ over closed curves vanish, hence � is a global potential. The definition of X
furthermore yields that � is constant on ∂T . We find that � is constant in T and
ψ ≡ 0. We conclude that a has a trivial kernel.

The bilinear form a is coercive on X , see e.g., [13] for this classical result.
We must be very careful in this statement. In [13], coerciveness is understood in
the sense that a(ψ,ψ) + ‖ψ‖2

L2 is equivalent to the squared H1-norm, but in our
case (namely when the bilinear form has a trivial kernel), the coercivity of a can
be concluded also in the classical sense, i.e.,‖ψ‖2

H1 ≤ C a(ψ,ψ) for all ψ ∈ X ,
compare [28].

The coercivity of a allows us to invoke the Lax-Milgram theorem. For ρ as in
the lemma, we find a solution ψ ∈ X of the problem

a(ψ, ϕ) =
∫

T
ρ · curl ϕ ∀ϕ ∈ X. (A.10)

We observe that an arbitrary scalar L2(T )-function h : T → R can be written
as h = div ϕ for some ϕ ∈ X with curl ϕ = 0; indeed, we can choose ϕ = ∇φ and
solve the Poisson problem for �φ = h with φ = 0 on ∂T . Inserting ϕ in (A.10)
shows that the solution ψ has a vanishing divergence.

It remains to collect the equations that are satisfied by the difference u :=
curlψ − ρ. The divergence of u vanishes by assumption (A.1) on ρ. The curl of
u vanishes in T by (A.10). The normal component of u vanishes on ∂T , since
ψ ∈ X has no tangential components on ∂T and since the normal component of
ρ vanishes on ∂T . Finally, u also satisfies the normalization (A.3): ρ satisfies it by
assumption and curlψ satisfies it by Stokes theorem. We conclude that u can be
written as the gradient of a harmonic function on T (the normalization (A.3) allows
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us to extend a local potential to a global potential). The potential is harmonic and
satisfies a homogeneous Neumann condition, hence it is constant and u vanishes.
This provides (A.4). Property (A.6) holds by construction of ψ ∈ X and (A.5) has
been shown before.
Estimate for the potential We use that ψ posesses again a vector potential. This
statement (with the correct boundary conditions for ψ) appears, e.g., as Theorem
3.12 in [2], but the proof can also be developed along the above lines. We write
ψ = curl� with div� = 0 in T and � · ν = 0 on ∂T and the normalization
(A.3). The potential � solves �� = ρ and is therefore controlled in H1(T ) by the
H−1(T )-norm of ρ. This implies the estimate (A.7). �
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